博客
关于我
曲奇饼问题
阅读量:751 次
发布时间:2019-03-22

本文共 707 字,大约阅读时间需要 2 分钟。

使用贝叶斯公式计算条件概率

案例背景

碗1和碗2各放30个香草曲奇饼和10个巧克力曲奇饼,分别与10个香草曲奇饼和10个巧克力曲奇饼。我们需要计算从碗1取出香草曲奇饼的概率。

通过贝叶斯定理,可以得到公式:[ P(B_1|V) = \frac{P(B_1) \cdot P(V|B_1)}{P(V)} ]

其中:

  • ( B_1 ):碗1。
  • ( V ):取出的是香草曲奇饼。

概率定义

  • ( P(B_1) = 0.5 )(碗1被选中的概率)。
  • ( P(V|B_1) = \frac{30}{40} = 0.75 )(从碗1中取到香草曲奇饼的概率)。
  • ( P(V) ):取到香草曲奇饼的总概率。
  • 计算总概率

    总样本空间为两个碗,每个碗有40个曲奇饼,总共80个曲奇饼。其中:

    • 香草曲奇饼总数:30(碗1) + 10(碗2)= 40个。
    • 巧克力曲奇饼总数:10(碗1) + 10(碗2)= 20个。

    因此:[ P(V) = \frac{40}{80} = 0.5 ]

    计算条件概率

    代入贝叶斯公式:[ P(B_1|V) = \frac{0.5 \cdot 0.75}{0.5} = 0.6 ]

    即,从碗1中取到香草曲奇饼的概率为60%。

    Python验证

    from thinkbayes import Pmfpmf = Pmf()pmf.Set('Bow1', 0.5)pmf.Set("Bow2", 0.5)pmf.Mult('Bow1', 0.75)pmf.Mult('Bow2', 0.5)pmf.Normalize()print(pmf.Prob('Bow1'))

    输出结果为:

    0.6

    验证结果正确,说明计算无误。

    转载地址:http://eigwk.baihongyu.com/

    你可能感兴趣的文章
    MySQL 大数据量快速插入方法和语句优化
    查看>>
    mysql 如何给SQL添加索引
    查看>>
    mysql 字段区分大小写
    查看>>
    mysql 字段合并问题(group_concat)
    查看>>
    mysql 字段类型类型
    查看>>
    MySQL 字符串截取函数,字段截取,字符串截取
    查看>>
    MySQL 存储引擎
    查看>>
    mysql 存储过程 注入_mysql 视图 事务 存储过程 SQL注入
    查看>>
    MySQL 存储过程参数:in、out、inout
    查看>>
    mysql 存储过程每隔一段时间执行一次
    查看>>
    mysql 存在update不存在insert
    查看>>
    Mysql 学习总结(86)—— Mysql 的 JSON 数据类型正确使用姿势
    查看>>
    Mysql 学习总结(87)—— Mysql 执行计划(Explain)再总结
    查看>>
    Mysql 学习总结(88)—— Mysql 官方为什么不推荐用雪花 id 和 uuid 做 MySQL 主键
    查看>>
    Mysql 学习总结(89)—— Mysql 库表容量统计
    查看>>
    mysql 实现主从复制/主从同步
    查看>>
    mysql 审核_审核MySQL数据库上的登录
    查看>>
    mysql 导入 sql 文件时 ERROR 1046 (3D000) no database selected 错误的解决
    查看>>
    mysql 导入导出大文件
    查看>>
    MySQL 导出数据
    查看>>