博客
关于我
曲奇饼问题
阅读量:751 次
发布时间:2019-03-22

本文共 707 字,大约阅读时间需要 2 分钟。

使用贝叶斯公式计算条件概率

案例背景

碗1和碗2各放30个香草曲奇饼和10个巧克力曲奇饼,分别与10个香草曲奇饼和10个巧克力曲奇饼。我们需要计算从碗1取出香草曲奇饼的概率。

通过贝叶斯定理,可以得到公式:[ P(B_1|V) = \frac{P(B_1) \cdot P(V|B_1)}{P(V)} ]

其中:

  • ( B_1 ):碗1。
  • ( V ):取出的是香草曲奇饼。

概率定义

  • ( P(B_1) = 0.5 )(碗1被选中的概率)。
  • ( P(V|B_1) = \frac{30}{40} = 0.75 )(从碗1中取到香草曲奇饼的概率)。
  • ( P(V) ):取到香草曲奇饼的总概率。
  • 计算总概率

    总样本空间为两个碗,每个碗有40个曲奇饼,总共80个曲奇饼。其中:

    • 香草曲奇饼总数:30(碗1) + 10(碗2)= 40个。
    • 巧克力曲奇饼总数:10(碗1) + 10(碗2)= 20个。

    因此:[ P(V) = \frac{40}{80} = 0.5 ]

    计算条件概率

    代入贝叶斯公式:[ P(B_1|V) = \frac{0.5 \cdot 0.75}{0.5} = 0.6 ]

    即,从碗1中取到香草曲奇饼的概率为60%。

    Python验证

    from thinkbayes import Pmfpmf = Pmf()pmf.Set('Bow1', 0.5)pmf.Set("Bow2", 0.5)pmf.Mult('Bow1', 0.75)pmf.Mult('Bow2', 0.5)pmf.Normalize()print(pmf.Prob('Bow1'))

    输出结果为:

    0.6

    验证结果正确,说明计算无误。

    转载地址:http://eigwk.baihongyu.com/

    你可能感兴趣的文章
    nvmw安装node-v4.0.0之后版本的临时解决办法
    查看>>
    nvm切换node版本
    查看>>
    nvm安装 出现 Error retrieving “http://xxxx/SHASUMS256.txt“: HTTP Status 404 解决方法
    查看>>
    nvm安装以后,node -v npm 等命令提示不是内部或外部命令 node多版本控制管理 node多版本随意切换
    查看>>
    NXLog采集windows日志配置conf文件
    查看>>
    ny540 奇怪的排序 简单题
    查看>>
    NYOJ -216 A problem is easy
    查看>>
    NYOJ 1066 CO-PRIME(数论)
    查看>>
    NYOJ 737:石子合并(一)(区间dp)
    查看>>
    nyoj 91 阶乘之和(贪心)
    查看>>
    nyoj------203三国志
    查看>>
    NYOJ-525 一道水题
    查看>>
    NYOJ127星际之门(一)
    查看>>
    nyoj58 最少步数
    查看>>
    N皇后问题
    查看>>
    N皇后问题
    查看>>
    n种方式教你用python读写excel等数据文件
    查看>>
    OAuth 2.0 MAC Tokens
    查看>>
    OAuth 及 移动端鉴权调研
    查看>>
    OAuth2 + Gateway统一认证一步步实现(公司项目能直接使用),密码模式&授权码模式
    查看>>